
Communicate Vehicle Accident Data to Blockchain
for Secure and Reliable Record-Keeping Using

Android Automotive Application
Luc Gerrits, Thomas Mabrut, and François Verdier

University Cote d’Azur, LEAT / CNRS UMR 7248, Sophia Antipolis - France
{luc.gerrits, thomas.mabrut, francois.verdier}@univ-cotedazur.fr

Abstract—The study presented in this paper demonstrates the
potential of blockchain technology to address some of the chal-
lenges present in the automotive domain, particularly in terms of
providing secure and efficient data handling for real-time vehicle
accident data storage. We propose an implementation on Android
Automotive OS using a Substrate-based private blockchain and
IPFS (InterPlanetary File System). The evaluation of the android
application shows successful data communication with IPFS and
the blockchain. The paper also exposes the application latency
and blockchain metrics analysis.

Index Terms—IoT, BIoT, Android Automotive, Substrate
Framework, IPFS

I. INTRODUCTION

The automotive industry is witnessing a shift in the domain
of in-vehicle infotainment (IVI) and connectivity, driven by the
increasing demand of smart devices, better user experience,
additional connected functionalities, and more generally, ad-
vanced driving capabilities. Software-Defined Vehicles (SDV)
is the result of the gradual transformation of automobiles
from ”electromechanical terminals to intelligent, expandable
mobile electronic terminals that can be continuously up-
graded” [1]. These new vehicles are powered by a range of
operating systems (OS), which are mostly QNX, Android,
Linux, and Windows. These new vehicles can be upgraded,
thus create value over time. The vehicle value increase by
creating links between Original Equipment Manufacturers and
automotive/internet software companies. These new vehicles
also improve user experience with additional applications to
the IVI platform [1]. At present, several vehicle manufacturers
are getting ready, if they haven’t already done so, to embrace
the Android Automotive operating system (an open-source
platform developed by Google) as a replacement for their
proprietary IVI software. Based on the automotive software
and electronics market report, software market is expected to
grow 9.1% per year through 2030 [2]. In these modern vehi-
cles, IVI systems are primarily composed of System-On-Chips
(SoC) and feature a hardware architecture closely resembling
a single-board computer. The overall global IoT market is
expected to grow to +43 Billion connected devices and have an
$11 trillion impact by 2025 [3] [4]. The automotive industry
takes part of this trend. This exponential growth of IoT

devices has an forever increasing landscape of challenges
that needs to be addressed (centralization, privacy, scalability,
security). In the automotive IoT domain, the challenges present
significant risks to individuals, including the possibility of
severe harm and even include fatalities. Literature shows high
interest in blockchain technology as a solution to some of
the IoT issues, including for vehicular IoT use cases [5] [6]
[7] [8]. Blockchain is a technology that creates a distributed,
append-only, ledger maintained by a decentralized peer-to-peer
network [9]. Data inside the blockchain is added only after
the participating network peers reach a common consensus.
Thanks to additional blockchain layer called smart contracts, it
is possible to execute pre-defined code in network, thus create
applications and automate state changes in the blockchain
ledger. Blockchain-IoT (BIoT) provide trust to IoT devices by
the intrinsic nature of blockchain. Nevertheless, blockchain is
not the ultimate solution for all issues, such as privacy.

In this paper, the IVI hardware is considered as an Internet-
Of-Things (IoT): the ”vehicle” is a sensing device that is
connected to the internet, sends and retrieve data.

Fig. 1. Renault’s use case: an accident occurs

This paper is written in the context of the Smart IoT for
Mobility project, which work is driven mainly by the accident
use case. Connected vehicles are able to send blockchain
transactions to the vehicle manufacturer when an accident
occurs (Figure 1). The use case focuses on the implementation
of blockchain in vehicles (BIoT) and the feasibility of collab-



orative services to use blockchain as a trusted environment to
share/or exchange data. For example, when a driver (who pre-
viously subscribed to an insurance company), has an accident,
the vehicle automatically send its data using blockchain and
through the usage of pre-define smart contracts an agreement
allows the insurance to view the vehicle accident data. This
paper is an attempt to propose and implement blockchain
integration inside the vehicle, to communicate its data to the
vehicle manufacturer when an accident occurs. Blockchain
ensures the data integrity, immutability, identification, and on-
chain management through smart contracts.

Section II provides a succinct overview of blockchain tech-
nology and a literature review of related works concerning
the implementation of blockchain on vehicles. Section III
outlines the proposed implementation of an Android Auto-
motive application for the vehicle accident use case. Section
IV provides an analysis of the application implementation and
its communication latency, while also presenting performance
insights of our custom blockchain. Finally, in Section V, we
give a brief discussion of our findings and conclude the paper.

II. STATE OF THE ART

A. Blockchain

The blockchain ledger is the result of an append-only
chain of blocks (each linked by the hash of the previous
block), that contains cryptographic signed transactions (using
asymmetric public-key cryptography and digital signature al-
gorithm). Thus, a user of the blockchain is required to sign,
use public-key cryptography to identity himself, and respect
the blockchain transaction format to insert valid transaction in
the chain.

There are three types of blockchain technology: public,
private or consortium. In public blockchains, anyone can
participate in the network consensus and read-write data. In
private blockchains, the access is restricted and the participants
in the network are limited, known and identified. Consortium
(or hybrid) blockchains are a combination of public and private
blockchain, and the permissions are specific to the use case
[10].

Private and consortium blockchains are known to match
the technical objectives and expectations of specific type of
organization use cases [11]. By controlling the read-write
access to the blockchain you removes the economic component
from it (i.e. no price volatility). By knowing the blockchain
participants, it is also possible to hold someone accountable.
Industries are regulated by law, trusted third parties, and
require ever more efficient and less costly technical solutions.

Up until 2018, it was necessary to use an existing blockchain
and develop smart contracts that mirrors your use case re-
quirements. This forces the application to use the native
blockchain cryptocurrency (used as incentive to the network).
Blockchain has now evolved to the point that it is possible
to create a specific blockchain, that meets your requirements,
from scratch using frameworks – especially general-purpose
frameworks designed for creating customizable blockchains.
At the best of our knowledge, Substrate framework (by Parity

Technologies) and Cosmos SDK (by Tendermint Inc.) are the
only stable tools that allow creating a specific blockchains. In
addition, these two technologies are the result of a common
vision, interoperability of blockchain.

Our use case requires extensive customization and the
study of the feasibility of interconnected services through
blockchain, hence the choice of Substrate framework in this
paper. In Substrate, smart contracts can be created using a
smart contract virtual machine (executing the contract code on
top of the blockchain), or using modules (also called pallets).
Pallets allows the business logic to be integrated inside the
core logic of the blockchain, thus performing better than a
traditional smart contract [12].

B. Automotive use case using blockchain

Blockchain has gained sufficient attraction in the automotive
industry that manufacturer, researchers, and Original Equip-
ment Manufacturer (OEM) have explored the implementation
of this technology on vehicles. In 2016, Leiding et al. intro-
duced the concept of self-managed Vehicle Ad-hoc Networks
(VANET) using blockchain (Ethereum blockchain) [5]. The
authors proposed an idea of removing centralized structure of
VANETs and replace it by Ethereum blockchain, to provide a
framework for self-organization and self-management of the
network. The paper shows how globally vehicle application
and services would communicate with the blockchain without
going into technical details or implementations. Blockchain
also has been shown to be a potential solution for secure
charging Electric Vehicles (EV). Su et al. [13] propose a
detailed scheme by only using theoretical models for each
blockchain component (network, smart contract, energy, etc.).
The resulting simulation discuss the power consumption,
costs, and energy demand of their model depending on three
schemes. The authors in [14], explore Internet-of-Vehicle
(IoV) distributed network architecture and its performance
analysis. The authors create a theoretical model of the network
and data exchanges between different objects surrounding
the vehicle. The resulting simulation express the average
throughput, network re-transmissions, and packets sent. To
the best of our knowledge, Jabbar et al. have studied the
most on the technical implementation of blockchain inside a
vehicle. In their first work [5], the authors demonstrate the
communication of a vehicle (using Ethereum blockchain) with
a prototype using Android application. The application detects
driver drowsiness with the purpose of being part of the vehicle
Advanced Driver Assistance System (ADAS). The combina-
tion of real-time communication between vehicles (V2V) and
drowsiness detection could help prevent accidents. The authors
of [5] fully implemented the application and evaluated it. In a
other work [6], the authors also implemented a new use case
(parking management) using blockchain and Android Auto.
The authors shows how secure Vehicle-to-Everything (V2X)
communication and payment with the parking management
use case. They include security analysis, costs, application



metrics, and blockchain metrics. Android Auto1 is an app
running on the driver’s phone, thus it has no direct access
to the vehicle data.

Gerrits et al. [15], explores and create a prototype appli-
cation to store vehicle data using a blockchain and IPFS
(InterPlanetary File System). The prototype was build on a
development board and not directly using a vehicle or vehicle
simulation environment. IPFS is a decentralized protocol for
sharing and accessing files, based on a peer-to-peer network.
IPFS uses content-addressing to ensure that files can be
accessed using their unique cryptographic hash (i.e. CID is a
hash based on data encapsulated in a special Protobuf format),
rather than their location on a specific server. IPFS can help
to improve the speed, reliability, and security of file sharing
on the internet.

The current challenge lies in integrating blockchain tech-
nology more closely with vehicle hardware. With the recent
advancements and progressions in the automobile industry,
it has become feasible to develop customized applications
directly on the vehicle itself. The next two sections present
an application solution and its specific blockchain.

III. AUTOMOTIVE BLOCKCHAIN APPLICATION

In this section we describe the design for a real-time
vehicle accident application detection and data storage using
Android Automotive and blockchain (Substrate-based). We
first describe the application that will run inside the vehicle
IVI, next we will explain the blockchain design.

A. Real-time Android Automotive Application

The prototype application aims to retrieve all the vehicle
information, sends it to the IPFS file system and stores the data
location (a content identifier, CID) in a blockchain (depicted
in Figure 2).

Android Automotive is a fully integrated operating system
for the IVI. Thus, it has access to various valuable vehicle
information, such as speed, acceleration, GPS position, battery
capacity, and 136 other sensors. However, access to vehicle
sensors is controlled by the Android Automotive framework
and the OEM-specific implementation of the platform for
security or safety reasons.

When an accident occurs, the application collects the vehi-
cle’s data and sends it to IPFS. Although IPFS returns a CID
(Content Identifier) when data is uploaded, we create this CID
offline in the vehicle to prevent the potential issue of delayed
response (or connection loss) from IPFS, which could take
several minutes depending on the size of the data. Creating
the CID offline ensures that the vehicle does not have to wait
for a response before proceeding with the next steps. In the
case of a lack of connectivity, the system will retry to connect
and send resend the data. Once the offline-generated CID is
available, it is sent to a private Substrate-based blockchain
belonging to the vehicle manufacturer. This approach allows
for more efficient data handling and faster response times in
critical situations like accidents.

1Android Auto and Android Automotive are not the same

Fig. 2. Accident use case: Android Automotive application connected to a
blockchain and IPFS

• The vehicle is equipped with the Android Automotive
application, which collects data from various sensors and
generates the CID offline.

• The collected data is then sent to IPFS, where it is stored
in a decentralized manner.

• The offline-generated CID is transmitted to the Substrate-
based blockchain, ensuring secure and efficient storage of
the data location. This CID permits also to retrieve the
information given to the IPFS by the blockchain.

The application is coded primarily using Android Automo-
tive Java SDK, Substrate API library, and IPFS CID library.

B. Substrate-based blockchain as a secure data registering
service

The Substrate framework is used to build a private
blockchain belonging to the vehicle manufacturer. This
blockchain securely stores the CIDs generated by the applica-
tion, allowing for easier tracking and retrieval of vehicle data
in the event of an accident.

Based on the previous state of art and analysis of organiza-
tional requirements, we design a private blockchain with the
following key components:

Custom Pallet: A pallet is a modular component in Sub-
strate that contains the logic for specific functionality. In our
use case, a custom pallet is created to manage the storage and
retrieval of accident data. This pallet includes actions such as
adding and querying the stored accident CIDs.

Access Control: To ensure secure data management, a
signed transaction is used to store the accident information in
the blockchain. Moreover, a simple hierarchical authorization
system is implemented to permit only authorized vehicles to
store data. The authorized vehicles list is managed by the
vehicle manufacturer.

Consensus Mechanism: A consensus mechanism is re-
quired to validate and agree upon transactions within the
blockchain network. For our use case, a suitable consensus
mechanism is Proof of Authority (PoA), given the private
nature of the blockchain. In the PoA-based system, a limited
number of trusted authorities is responsible for validating
transactions. In some cases only one trusted organization is
controlling the blockchain validators (possible geographical



decentralization), and in other cases a limited group of or-
ganizations can each participate in the consensus (i.e. more
decentralized).

IV. EVALUATION OF THE IMPLEMENTATION

To examine the proposed implementation, we undertake a
comprehensive analysis of the application, the communication
protocol with the blockchain, and the interpretation of the
created custom blockchain that was created.

A. Android Automotive Application

The application interacts only with IPFS and the blockchain
(Figure 3).

1) Implementation details: Android Automotive offers ac-
cess to a total of 136 sensors, each of which yields data in
the form of 32-bit integers (total of 4672 bits). We format
the data using a custom Protobuf [16] format. Protobuf allows
data formatting with efficient serialization/deserialization. The
vehicle application records two categories of sensor data
(SD), which depend on their event-driven properties. The first
category of sensors is periodically recorded every seconds (e.g.
speed, acceleration, GPS position) and only the last ten records
are sent when an accident occurs. The second category of
sensors is recorded according to the occurrence of events (e.g.
we send the last 10 events of the engine state, associated with
its timestamp). All timestamps (TS) are standard UNIX 32-bit
numbers.

With the vehicle sensors information and record configura-
tion we can estimate the maximum storage size each accident
will produce.

10 records ∗ (64 TS bits + 5 SD ∗ 32 SD bits)
+10 records ∗ 131 SD ∗ (64 TS bits + 32 SD bits)

= 128000 bits ≈ 128.0 kbits
(1)

Adding pictures or video camera data would significantly
increase the storage requirements to several gigabytes. Natu-
rally, with today bandwidth speed, sending 128 kbits (over the
internet) is relatively fast, but increasing the data will result
in significant latency.

Although the primary focus of the application is not on
accident detection, a simple test was performed to simulate
an accident by abruptly changing the vehicle speed from
100 km/h to 0 km/h. The application successfully detected
the simulated accident and initiated the data recovery and
transmission process.

Once the data has been recorded and an accident has been
detected, the data is sent to IPFS (step 1 on Figure 3).
The application start a new thread to POST an HTTP request
towards the IPFS API, which returns the CID upon successful
upload. To prevent any upload latency, we use an offline
generated CID to send an accident report to the blockchain.

To be totally compatible with the IPFS content-addressing,
we mimic the CID format standard created by IPFS. A CID
is a self-describing content identifier composed of four parts:
a multibase, a version, a multicodec and a multihash. The
multibase is a self identifying base encoding (base58btc,

Fig. 3. Interactions between vehicle-blockchain-IPFS after accident occurs

base64, . . . ), the version is the binary representation of the
CID version (CIDv0, CIDv1, . . . ), the multicodec is the data
format (MerkleDAG, MerkleDAG cbor, . . . ), and the multihash
is the hash function (SHA-256, SHA-512, . . . ) of the content
being addressed.

The size of a CID, can vary depending on the version of CID
being used and the length of the multihash (256 bits, 512 bits,
. . . ). For example, a typical CID using version 0 with a SHA-
256 multihash will be 34 bytes long when encoded in base58.
Using CIDv1 with a SHA-256 multihash will be 46 bytes long
when encoded in base58. Using different base encodings, such
as base16 or base32, will result in different CID sizes. Overall,
the size of a CID is relatively small compared to the size of
the content it identifies, making it a lightweight and efficient
way to reference data in IPFS.

Sending a transaction (to store the accident data) to the
blockchain is divided in 3 steps. First, initiate a Websocket
TCP connection to a blockchain node (step 2 on Figure
3). WebSocket is a protocol used for real-time bidirectional
communication between a client and a server over a single
TCP connection.

Now that we have open the Websocket connection we need
to retrieve elements from the blockchain state that will be
incorporated in the transaction. The transaction that will exe-
cute the smart contract (called extrinsic execution in Substrate)
requires to know the chain metadata, (step 3 on Figure 3),
specification, latest block number, and call indexes (found in
the metadata). Extrinsics are indexed in the blockchain core
runtime, along with its actions (e.g. report accident extrinsic
n°98 and report accident action n°0 corresponds to callindex
0x6200). In summary, our call is composed of the extrinsic
version, the size of the transaction, the public key of the
account that sign the data, the signature, the era (the number
of blocks after the checkpoint for which a transaction is valid.
If zero, the transaction is immortal), the nonce (number of
transactions sent by a specific account), the tip, the callindex,



and the extrinsic action call arguments.
The signature is performed on the combination of 3 parts

previously packed, and sign it using SR25519. These 3 parts
are the callindex, the call arguments (in our case the argument
is the CID), the extra compose of era, nonce, tip, additional
compose of the runtime specversion, the runtime transaction
version, the genesis hash, and the hash where we want to add
our data. The last step is to send the signed extrinsic call
containing the data CID (step 4 on Figure 3).

2) Simulation: We simulate the application using Android
open-source software which emulate an Automotive OS with
Android Virtual Devices (AVD). In our case we use an OEM-
specific (by Volvo) system image from the Polestar 2 vehicle
(API v29.2, Android 10.0, X86 64). The emulator includes
a dashboard that we use to display information about the
vehicle (e.g. speed, GPS, . . . ) and blockchain (e.g. metadata,
transaction status, ...) and additional debug buttons (e.g. force
accident detection).

We get the execution latency (Table I) of the application
depending on the chosen endpoint (local or cloud). These
latency is the time it takes to send a transaction and the
data when the vehicle detected an accident. This application
is running on a laptop (Intel® Core™ i7-10875H CPU @
2.30GHz × 16, 32,0 GiB RAM) with a Gigabit Ethernet
connection, and communicates to locally installed IPFS and
blockchain or with a distant cloud from a cloud provider.

Latency (second) Local Cloud
Send transaction to blockchain 1.065 4.971
Send raw data to IPFS 0.023 2.134
Total 1.088 7.105

TABLE I
ANDOID AUTOMOTIVE APPLICATION LATENCY

The results from the local setup experimentation revealed
that both blockchain and IPFS could efficiently process re-
quests within a timespan of less than two seconds. Moreover,
the difference in latency observed between the local and cloud
setups emphasizes the importance of network conditions and
can significantly impacts performance. These results imply that
vehicle manufacturers must consider the type of communica-
tion device utilized within the vehicle to ensure optimal system
operation.

B. Blockchain and IPFS

A custom private blockchain is built using Proof-of-
Authority consensus algorithm and a custom module that
match our use case interaction requirements was created. The
blockchain is a fork of the substrate-node-template2 version
polkadot-v0.9.35. We deploy the blockchain in two ways: a
local dev setup (single node, simulated Aura consensus), and
in a cloud with 3 blockchain validator nodes setup. The local
setup is used to debug and prototype the implementation in the
first place, next we use the cloud to get more real-life scenario
metrics.

2https://github.com/substrate-developer-hub/substrate-node-template/

In the cloud setup we can estimate the maximum throughput
by sending multiple accident reports (10k reports) at a constant
rate (from 100 to 2k transaction per second). We name the
Input TPS, the sent transactions per second to the blockchain,
and the Output TPS the number of transaction included in the
blockchain that are finalized (i.e. the transaction is included
in a block and immutable).

To generate these results we create a multi-threaded bench-
mark program to generate identities, initiate the identities
in the blockchain, and finally mass-send accident reports
transactions to the blockchain. We configure the benchmark
to send a total of 10k accident reports.

 0

 200

 400

 600

 800

 1000

10
0

20
0

40
0

60
0

10
00

15
00

18
00

20
00

A
v

g
 O

u
tp

u
t 

T
P

S

Input TPS

Substrate-based - Aura consensus

Input TPS vs Avg Output TPS

 0

 2

 4

 6

 8

 10

10
0

20
0

40
0

60
0

10
00

15
00

18
00

20
00

A
v

g
 B

lo
ck

ti
m

e 
(s

)

Input TPS

Substrate-based - Aura consensus

Input TPS vs Avg Blocktime

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

10
0

20
0

40
0

60
0

10
00

15
00

18
00

20
00

T
es

t 
T

im
e 

(s
)

Input TPS

Substrate-based - Aura consensus
Expected Test Time

Input TPS vs Test Time

Fig. 4. Blockchain maximum throughput (the average Output TPS is limited
by a maximum 560 TPS), blockchain blocktime (6 sec.), benchmark test time
(minimum 12 sec.), and expected test time

First, we can observe (Figure 4) that the transaction per
seconds (TPS) executed by the blockchain can reach 400 TPS.
Secondly, the blockchain consensus is configured to create a
block every 6 seconds and the results shows no variation in
the block production time if Input TPS increase up to 2k.
Thirdly, the test time indicates how much the blockchain uses
its transaction processing queue. The expected test time is the
theoretical time that the transactions should be executed.

We observe that the test time tends to a minimum threshold
of 12 seconds. This is first due to blocks being created every
6 seconds, thus a test can never be faster than 12 seconds
(minimum 2 blocks to retrieve performance metrics). However,
sending more than 10k transactions with more than 1k TPS,



can’t result in a higher Output TPS due to pending transaction
queue limitation.

The configuration of our blockchain node software is set to
10k transactions in the pending queue. The blockchain node
has a pending queue limit of 10k transactions and can process
on average 560 TPS. Thus a continuous Input TPS can’t be
higher than 560 TPS, otherwise the pending queue will fill,
reach 10k, and will start rejecting transactions. A solution
could be to implement temporizing transactions in a memory
pool before being processed.

V. DISCUSSION AND CONCLUSION

The primary objective of this research paper is to present
an implementation of a vehicular use case, which ensures the
security of vehicle accident-related data through the utilization
of blockchain technology and a decentralized storage file sys-
tem. Our practical implementation has successfully established
communication between the blockchain and IPFS (all code
available here [17]). The blockchain includes a smart contract
that facilitates a basic authorization check. Our implementation
differs from Jabbar et al. [6] work by creating an Android
Automotive application which has direct access to OEM-
specific vehicle data. Jabbar et al. implement an Android Auto
application which is installed on the driver’s smartphone.

However, there exists potential for enhancement in crucial
areas, namely security, privacy, and confidentiality. Security
can be improved by protecting the private keys of the ve-
hicle using hardware security modules (e.g. using physical
unclonable functions). Privacy and confidentiality are closely
intertwined in fulfilling regulatory requirements, such as the
European General Data Protection Regulation (GDPR), which
strives to enhance individuals with control and rights over their
personal data. While our implementation did not account for
privacy and confidentiality concerns, literature suggests that
blockchain technology holds immense potential in addressing
these issues [18] [19].

A use case specific blockchain was developed using the
Substrate blockchain framework. The performance analysis
results (560 transactions per seconds) indicate the possibility
of the implementation being applicable to a practical scenario.
Furthermore, the modular architecture of the Substrate Frame-
work suggests that organizations can leverage its flexibility to
their advantage. In addition, we have also presented latency
analysis using a vehicle emulation environment to investigate
the delays required after an accident occurs (less than 8
seconds). In our further research, we will use the Substrate
framework to create a more complex use case to enable
multiple interoperable services to communicate together.

ACKNOWLEDGMENT

This work has been supported by the French government,
through the UCAJEDI and EUR DS4H Investments in the
Future projects managed by the National Research Agency
(ANR) with the reference number ANR-15-IDEX-0001 and
ANR-17-EURE-0004.

REFERENCES

[1] “Software-defined vehicles – a forthcoming industrial
evolution,” https://www2.deloitte.com/cn/en/pages/consumer-
business/articles/software-defined-cars-industrial-revolution-on-the-
arrow.html, accessed: 2023-03-30.

[2] “Outlook on the automotive software and electronics market
through 2030,” https://www.mckinsey.com/industries/automotive-
and-assembly/our-insights/mapping-the-automotive-software-and-
electronics-landscape-through-2030, accessed: 2023-03-30.

[3] “Growing opportunities in the internet of things,”
https://www.mckinsey.com/industries/private-equity-and-principal-
investors/our-insights/growing-opportunities-in-the-internet-of-things,
accessed: 2023-03-30.

[4] “By 2025, internet of things applications could have $11 trillion
impact,” https://www.mckinsey.com/mgi/overview/in-the-news/by-2025-
internet-of-things-applications-could-have-11-trillion-impact, accessed:
2023-03-30.

[5] R. Jabbar, M. Kharbeche, K. Al-Khalifa, M. Krichen, and K. Barkaoui,
“Blockchain for the internet of vehicles: A decentralized iot solution for
vehicles communication using ethereum,” Sensors, vol. 20, no. 14, 2020.
[Online]. Available: https://www.mdpi.com/1424-8220/20/14/3928

[6] R. Jabbar, N. Fetais, M. Kharbeche, M. Krichen, K. Barkaoui, and
M. Shinoy, “Blockchain for the internet of vehicles: How to use
blockchain to secure vehicle-to-everything (v2x) communication and
payment?” IEEE Sensors Journal, vol. 21, no. 14, pp. 15 807–15 823,
2021.

[7] M. Cebe, E. Erdin, K. Akkaya, H. Aksu, and S. Uluagac,
“Block4forensic: An integrated lightweight blockchain framework for
forensics applications of connected vehicles,” IEEE Communications
Magazine, vol. 56, no. 10, 2018.

[8] K. L. Brousmiche, T. Heno, C. Poulain, A. Dalmieres, and E. Ben
Hamida, “Digitizing, Securing and Sharing Vehicles Life-cycle over a
Consortium Blockchain: Lessons Learned,” in 9th IFIP Conference on
NTMS, 2018.

[9] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[10] K. Wüst and A. Gervais, “Do you need a blockchain?” in 2018 Crypto
Valley Conference on Blockchain Technology (CVCBT), 2018, pp. 45–54.

[11] M. Jo, K. Hu, R. Yu, L. Sun, M. Conti, and Q. Du, “Private blockchain
in industrial iot,” IEEE Network, vol. 34, no. 5, pp. 76–77, 2020.

[12] “Substrate framework documentation,” https://docs.substrate.io/, ac-
cessed: 2023-03-30.

[13] Z. Su, Y. Wang, Q. Xu, M. Fei, Y.-C. Tian, and N. Zhang, “A secure
charging scheme for electric vehicles with smart communities in energy
blockchain,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4601–
4613, 2019.

[14] T. Jiang, H. Fang, and H. Wang, “Blockchain-based internet of vehi-
cles: Distributed network architecture and performance analysis,” IEEE
Internet of Things Journal, vol. 6, no. 3, pp. 4640–4649, 2019.

[15] L. Gerrits, R. Kromes, and F. Verdier, “A true decentralized implementa-
tion based on iot and blockchain: a vehicle accident use case,” in 2020
International Conference on Omni-layer Intelligent Systems (COINS),
2020, pp. 1–6.

[16] “Protocol buffers documentation,” https://protobuf.dev, accessed: 2023-
03-30.

[17] “All code for this paper,” https://github.com/projet-SIM/android-
automotive-blockchain-2023, accessed: 2023-03-30.

[18] T. Salman, M. Zolanvari, A. Erbad, R. Jain, and M. Samaka, “Security
services using blockchains: A state of the art survey,” IEEE Communi-
cations Surveys Tutorials, vol. 21, no. 1, pp. 858–880, 2019.

[19] D. Wang, J. Zhao, and Y. Wang, “A survey on privacy protection of
blockchain: The technology and application,” IEEE Access, vol. 8, pp.
108 766–108 781, 2020.


