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ABSTRACT
Private or consortium blockchain networks have fewer verified
participants and offer better throughput and transaction efficiency
than public networks. However, as more and more blockchain con-
sensuses are designed for private or consortium networks, their
performances are often estimated without a practical use case im-
plementation. In our use case, participants do not have to trust each
other but still work together to build an ecosystem where users
control their data and information. This paper analyzes the perfor-
mance (transaction throughput, rejections, node participants) of
Byzantine Fault Tolerant Consensus (BFT) using two blockchains:
Hyperledger Sawtooth and Ethereum.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures.
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1 INTRODUCTION
Since the birth of the Bitcoin [13] network in 2008, new decentral-
ized ledger technologies (DLTs) have emerged to enable new use
cases. Moreover, through smart contracts, blockchains can execute
custom business logic in a decentralized network. The consensus
algorithm, allowing all network peers to agree on each transac-
tion, is a crucial part of any blockchain and determines the entire
network’s security, scalability, and consistency. Thus consensus
algorithm plays a significant role in transaction speed limit and net-
work resilience to byzantine participants. Blockchain requirements
are different depending on the use case, but these two previous
features are crucial elements for worldwide adoption.

This paper focuses on the performances (i.e. transaction process-
ing, transaction throughput, forks, and scalability) of blockchain
in a consortium or private configuration. For this reason, we have
targeted only BFT consensuses that are the most used in this pri-
vate/consortium type of use case, which require to be resilient
to faulty nodes and maintain consistency in the network. BFT
consensus algorithms are designed for networks that require lim-
ited trust among a predefined number of validators. Although the

network participants are assumed to be verified actors in the pri-
vate/consortium network, the nodes can be subject to communica-
tion or faulty nodes which demands the need for BFT algorithms.

Study on BFT consensuses already trends to show scalability lim-
itations, thus it is not used for public blockchain networks. When
increasing the number of nodes in the private/ consortium network,
the transaction throughput decreases [20]. Schäffer et al. [19] stud-
ied the Ethereum private network throughput bottleneck showing
an average of 328 transactions per second. The authors use a va-
riety of configurations and conclude that Ethereum has limited
scalability.

This paper vary the blockchain input workload similarly to
the reasearch of Pongnumkul et al. [15]. The authors have tested
Ethereum private network and concluded a maximum of 38.93
transactions per second. Considering the results are dated from
2017, it should be noticed that we expect a better transaction rate
due to software and hardware improvements. Also, we notice a lack
of practical implementation with a industrial use case. We aim to
get practical results using a cloud architecture to verify the limits
and discover the maximum capabilities of new BFT consensuses.

1.1 Use case
In this work, the selected use case of Renault is an accidentology
scenario represented in Figure 1. Here the blockchain network is
defined as a consortium network of partners involved in an acci-
dent claim and alert process. Our node participants (i.e. validators)
are Renault - Original Equipment Manufacturer (OEM), Accident
Insurance Providers, Medical Service, State Actors for legal and
dispute resolution, Police and other emergency services.

The novel concept of this use case is to enable the blockchain as a
distributed ledger that stores the accident’s transactions. Accident’s
transactions details are the latest vehicle speed, vehicle condition,
radar information, driver condition, etc. These are contextual data
stored in a database maintained by the consortium partners. The
hash of this data is stored as proof-of-existence on the blockchain.
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Figure 1: Renault accident use case

Three permissions roles are implemented using smart contracts
that allow a vehicle to send valid transactions and be part of the
blockchain network. These permissions are: 1) the admin who
deploys the smart contract and has a "super-user" role in the con-
sortium network 2) the factory of OEM: Designated Factories who
add the vehicle when it leaves the production line 3) the vehicle
owner: Individual owner who reports the accident.

If an accident occurs, the vehicles can send data through trans-
actions to the blockchain network using smart contracts. The em-
bedded microcontroller inside the vehicle can send data such as
the car speed, radar information, odometer, etc. This collaborative
blockchain technology aims to prevent drivers from fraud, allowing
automated refunds and verifiable data for insurances, enabling an
ecosystem of accidentology partners to exist.

This paper focuses on implementing a consortium blockchain
satisfying the above use-case and studying its performances. A
consortium blockchain is deployed on a private cloud infrastructure
to simulate a real-world industrial environment. The number of
nodes in the network represents the use case ecosystem’s number
of participants (i.e. Renault, insurance, etc.).

The use case’s security perspectives (e.g. GDPR and authentica-
tion) highly depends on the smart contract design and data man-
agement. Therefore, the paper only implements a basic role base
permission logic to prevent unauthorized transaction execution.
BCTrust, created by Hammi et al. [9], is one of many blockchain au-
thenticationmechanisms. They focus on IoT integration and present
the power consumption and execution time of their solution. Fur-
thermore, Haque et al. [10] conducted a systematic literature review
about GDPR blockchain compliance. As a result, they show GDPR-
blockchain research trends and articles addressing the problem of
GDPR compliance integration with blockchain.

1.2 BFT consensuses
The Byzantine fault-tolerant (BFT) consensus family ensures net-
work liveliness and security even when some nodes are faulty or
acting malicious, as long as a minimum number of nodes are con-
nected, operating correctly, and behaving honestly. BFT assumes
an asynchronous network where there may be network failure
or individual node failures. In our work, we consider a family of
BFT algorithms: Practical Byzantine fault-tolerant (PBFT), Proof of
Authority (PoA), Clique, IBFT, and QBFT.

PoA algorithms have less message communication compared
to PBFT but suffer from consistency and availability problems in
an asynchronous setting [5]. We analyze this family of consensus
algorithms through our industrial, automotive (Renault) use-case.

2 BFT BLOCKCHAINS
2.1 Hyperledger Sawtooth PBFT
The Hyperledger blockchain framework family, created by the
Linux Foundation Hyperledger, developed Sawtooth as a modu-
lar and enterprise-focused blockchain [11]. Sawtooth blockchain
consists of a validator, the core of the blockchain peer, one or mul-
tiple transaction processors handling transaction business logic,
and a REST API providing convenient HTTP communication with
the peers. Moreover, Sawtooth supports two main consensus al-
gorithms, Proof-of-Elapsed-Time (PoET) and Practical-Byzantine-
Fault-Tolerance (PBFT).

Practical Byzantine Fault Tolerance consensus is a voting-based
algorithm which implementation in Sawtooth is based on the work
of Barbara Liskov, andMiguel Castro [3]. PBFT properties are Byzan-
tine fault-tolerant, non-forking, leader-based, and communication-
intensive.

2.2 Ethereum Geth (Clique)
Ethereum, one of the most prominent public blockchain, has a
mechanism to build private networks with a proof-of-authority
(PoA) algorithm named Clique [16] implemented in Geth client. In
the algorithm, the creation of a new block is restricted to a fixed
set of 𝑛 nodes called sealers, in which a maximum of 𝑓 < 𝑛/2
can be faulty nodes or Byzantine. Every sealer can seal a block at
a fixed time, but it has to wait until it is not sealed recently for
(𝑛/2) + 1 blocks until its last block. If a designated sealer signs a
block for a particular sealing round, it is termed as in-order sealing.
On the other hand, if the designated sealer is subject to byzantine
conditions and cannot seal a block, any other sealer may propose
a block after waiting for the block period termed as out-of-order
sealing. Out-of-order sealing can occur quite frequently in case of
short block period times and large network time delays between
nodes. If the previous conditions are met, it can eventually cause
more forks in the network, which is an issue in Clique and lacks
chain finalization compared to other consensus algorithms.

2.3 Ethereum Hyperledger Besu (IBFT)
Hyperledger Foundation has created Besu, a client who has imple-
mented the IBFT [2] consensus algorithm, which has immediate
finality of the chain. The creation of a single block at a particular
height avoids the problem of the forks. Also, the need for 𝑛/3 ma-
jority for completing consensus makes a forked chain less probable.
In this algorithm, out of a set of 𝑛 validators, an arbitrary node is
selected to be a block proposer. If the other validators accept the
proposer as a block creator and validate the block, it is considered
accepted. To avoid the creation of multiple blocks, a block locking
mechanism is introduced when a super majority of validators ac-
cept the block proposition. Then a new round change is proposed
with a new validator for the next block creation.
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2.4 Ethereum Hyperledger Besu (QBFT)
QBFT algorithmwas created to avoid safety and liveness issues such
as [1] [17] in IBFT protocol where two valid nodes can lock different
blocks at the same height. This can be attributed to transmission
delay between the nodes and there is no provision to unlock the
blocks in the consensus algorithm. Due to these drawbacks, the
Quorum blockchain has developed a variant of IBFT also termed as
QBFT algorithm [12]. For each round, a block proposal is created
who broadcasts a pre-prepare message to the rest of the validators.
Other validators on receiving the pre-prepare message broadcasts a
prepare message. On receiving pre-prepare message, it then sends
a commit message. The majority for each of the state (pre-prepare,
prepare and commit) is thus 2𝑁 /3. Finally, a new block is inserted
by the proposer into the blockchain after 2𝑁 /3 commit messages.
Then the next round is invoked after 2𝑁 /3 round changes.

Considering the above four BFT consensus algorithms, we com-
pare them across different desirable properties in a distributed
system as in table 1.

Property Clique QBFT IBFT PBFT
Binary Geth Besu Besu Sawtooth
Chain-
Finality

Prob* Det* Det* Det*

Forks Yes No No No
Block-
Locking

No No Yes No

Chain-
Reorganisations

Yes No No No

Liveness Upto 𝑁 /3
failures

Upto 𝑁 /3
failures

Upto 𝑁 /3
failures
and Prone
to dead-
lock

Upto 𝑁 /3
failures

Throughput High < Clique < QBFT < QBFT
Prob*: Probabilistic , Det*: Deterministic

Table 1: Comparison of BFT Consensus Consortium
Blockchains

3 EXPERIMENT SETUP
3.1 Hyperledger Sawtooth
In previous research, Gerrits et al.[7] showed the performances
limits of Hyperledger Sawtooth in the same car accident context
as this paper. The experiment setup uses a cloud infrastructure,
and a distant client sends transactions (i.e, input transaction per
second, TPS) according to the use case. The input TPS and different
implementation configurations demonstrate the software and PBFT
consensus limits.

3.2 Ethereum
In Ethereum, the client binaries chosen for constructing the pri-
vate consortium networks are Geth v1.10.7 for Clique and Besu
v21.7.2 for IBFT and QBFT consensus algorithms, respectively. The
Ethereum implementation of the car accident use case is designed
as three layers. They are:

Figure 2: Hyperledger Sawtooth network cloud deployment

(1) Consortium Network Layer: Each participant in the con-
sortium is deemed to be a sealer in the blockchain private
network. These sealers are considered validators who par-
ticipate in consensus to validate transactions and create
blocks. A boot node is installed to connect the other nodes
in the blockchain peer-to-peer network. The network en-
ables the smart contract to be deployed via the Application
programming interface. The private network is configured
to be of negligible gas price as we are focus only on the
enterprise use-case than a cryptocurrency transactions.

(2) Accident Smart Contract: Smart Contract deployed on the
Ethereum network executes on the Ethereum Virtual Ma-
chine of each node. Smart contract is built using solidity.
Smart contract creates four types of roles in the blockchain
network. They are 1) Admin 2) Factory Admins 3) Cars.
Using the smart contract, permission system is enabled in
which an admin can deploy the smart contract and adds the
Factory Admin Nodes who can participate in the network.
The Factory Admins can add the vehicles which can partic-
ipate in the network and send the accident transaction.

(3) Client Implementation: A use-case accident smart contract
is deployed by the manufacturer entity. Next, a client based
out of web3 library is built to communicatewith the blockchain
network. This client will be embedded in the Electronic
Control Unit of the vehicle and it sends the smart contract
transaction to the network via WebSocket API. In addition,
client is equipped to send permission transactions to add
new participants, send accident transactions and retrieve
the latest accident hash.

4 RESULTS
Performance measurement for our Sawtooth - PBFT, and Ethereum
- Clique, IBFT, and QBFT are performed in TAS Group cloud in-
frastructure based in Sophia Antipolis, France. The underlying
infrastructure hosts a Kubernetes cluster, enabling us to create Ku-
bernetes pods, each hosting a blockchain node. We monitor the
test performance using telemetry from the blockchain node on the
Grafana dashboard and MongoDB for test log maintenance.
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Figure 3: Ethereum network cloud deployment

We assume here a partially asynchronous network as there is a
minute delay counting the cloud virtualization, Kubernetes inter-
pod routing, node computation load, and peer-to-peer factor. We do
not consider any threat model to be included in our test and assume
a legitimate consortium. We vary the input transaction rate against
the number of nodes participating in the consensus. We consider
here the output transaction to be transactions that are validated and
ordered successfully after the consensus. Format for the test per-
formed in each blockchain varies a bit since the implementation of
Sawtooth-PBFT, Ethereum -Clique, IBFT, and QBFT are completely
different organizational and design structures. But the fundamental
idea is to test the blockchains performances by varying the nodes,
also named scalability. Performances is also tested by incremen-
tally changing the input TPS (Transaction-Per-Second) submitted
to the blockchain node and pushing the maximum threshold it can
achieve. Our developed test suite for this paper is available online
at [8] for more information about code, configuration and further
contributions.

4.1 Sawtooth performance measurement
A previous in-depth studied of Hyperledger Sawtooth revealed
a strong limitation of the blockchain transaction processing [7].
This study demonstrates the same use case and smart contract
business logic. The simulation consist of sending car crashes using
IoT devices.

Figure 4 shows the transaction processing speed of the blockchain
by varying the input transaction per second. We see a maximum of
25 transaction per second using the 4 nodes configuration. When
increasing the number of nodes, the transaction processing speed
decreases down to 13 transactions per second.

The study on Sawtooth also discuss the possible factors reducing
the transaction speed. The consensus and the software are the main
factors reducing throughput. The results on Figure 4 shows the
consensus network limitation with the number of node validators.
The software limitation is due to single threaded and intrinsic
language (Python) performance issues.
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4.2 Ethereum performance measurement
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Figure 5: Ethereum Clique Consensus Performance

In Ethereum, we perform the test for accident transactions total-
ing 30000 transactions for each iteration in 3 iterations and measur-
ing the average throughput results. For Clique, as in Figure 5, we
see that the output TPS constantly increases for five nodes until it
becomes a plateau at input TPS of 2000 outputting 1500 TPS due to
Ethereum EVM (Ethereum Virtual Machine) computation overlead
and a minute scalability factor. Minute here signifies that the con-
sensus proportion is less at N/2 and the phase is less compared to
other consensus algorithms IBFT, QBFT where we see a significant
drop with the number of nodes as in Figure 6 and 7.
In comparison to the work as in [18] where the test was performed
on the Microsoft Azure network, we noticed a similar performance
for Clique and IBFT. Still, the format of the test varies with no
variation across input TPS. Also, the number of clients for IBFT
is a single instance that is multithreaded, but in the latter, it was
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multiple instances that might improve the API processing of trans-
actions but not significantly as the transaction are stocked in queue
immediately before validation and consensus.

In Clique for more nodes we can see the saturation arriving
quickly at input TPS of 1500 as it has less message overhead. In IBFT
and QBFT, we see a gradient increase up to 500 input TPS outputting
460 average TPS. At this point, it has a hash calculation load of the
Bouncy Castle Library, which it uses in its java implementation.
Aside from the computational hash overload, we see a drop as
message overload increases, but in IBFT, it is more significant as we
have block locking latency in the consensus to consider here. For
an input rate of 1000 TPS, we see a substantial drop for both as the
consensus and implementation reasons discussed earlier causes it.

In Clique we notice frequent forks and chain reorganization
which affects the performance and stability of the chain. On the
other hand IBFT and QBFT has no forks in the chain which ensures
the finalisation of the chain. In IBFT, we encounter a stalling issue
due to the block locking mechanism. Block locking for each con-
sensus round is implemented in IBFT to improve consistency but

instead, it affected the liveness of the network. In QBFT, we did not
notice any stalling of the network nor the presence of forks in the
chain.

5 DISCUSSION AND CONCLUSION
Our analysis of the BFT family of consensus blockchains from the
above results can be based on three perspectives: 1) Consistency
Availability and Partition Tolerance (CAP) 2) Performance 3) Ap-
plicability to Industry. We apply CAP Theorem [6] perspective as
in [4], to our above blockchain implementations. We consider the
consistency to be fork affinity, ordering, and replicated transactions
and messages. Availability means that the blockchain can respond
and accept a valid transaction to be added to the chain. Partition
tolerance is when the network partition or peering problem doesn’t
impede the system, and it can recover from it.

CAP Clique IBFT QBFT PBFT
Consistency Low High Medium High
Availability High Medium Medium Low
Partition-
Tolerance

High Medium Medium Medium

Table 2: CAP Analysis of BFT Consensus Algorithms

We notice as listed in table 2 that the Clique suffers from con-
sistency issues. Different sealers can have different network views
and create a fork, which eventually leads to an unresolved fork
affecting partition tolerance. But the chain may progress at N/2
participant consensus, but it would be difficult to finalize as we can-
not decide the ephemeral chain. In IBFT, PBFT, and QBFT, it favors
more consistency and partition tolerance. As it is subject to multiple
phases at each consensus fork is not created, this also brings down
the availability. Since it waits for N/3 participant response at each
round, it has to wait if a network or node fails. The performance of
BFT Blockchain in our results considers many factors, such as :

(1) Number of Nodes
(2) Message Communication
(3) Leader Selection Phase
(4) Consensus Phase Count
(5) Implementation Bottleneck

Number of nodes augments the message communication overload.
Also, the leader, selection, and the number of consensus phases
in each round are vital factors. The implementation bottlenecks
like EVM processing for Geth, Sawtooth Transaction Processor,
Besu Bouncy Castle Hash calculation also counts for the drop in
transaction processing. So Clique performs better in this case as
it has a predefined leader operation in a round-robin mode, with
fewer phases in each consensus and a minor EVM implementa-
tion problem. IBFT and QBFT have an average impact on all the
considered factors, with improvement needed in hash calculation.
Sawtooth PBFT has a massive drawback in the implementation part
compared to others as well as its consensus has more phases and
communication.

We consider the applicability of the blockchain to the Renault
automotive use-case, which requires a minimum of 25 transactions
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per hour to be processed by the blockchain as per ONISR Report
[14]. In our figure 8 we plot the best normalised over the maxi-
mum output TPS performance of each variant of BFT blockchain
at optimal input TPS to exclude the implementation overload. We
consider the Output TPS coefficient of 1 as the best TPS perfor-
mance for each of the blockchain and 0 as the lowest TPS. Output
TPS Coefficient here shows the variation of the performance as the
nodes are increased in the consensus process and their behaviour.
Globally, in the BFT consensus family, we note that the best per-
formances are obtained when using 4 to 6 nodes. Except for QBFT
the descent starts to arrive slowly at 12 nodes but in comparison to
Clique the processed transaction throughput is less. In this range
of nodes, the transaction processing performances of the entire
blockchain is best. It lies in the range desired for the number of
validator participants we can have for an accident use case. After
we surpass 10 nodes, all the BFT consensus blockchains descend
in their performance until they reach a stable rate of output TPS.
This can be attributed to the fundamental reason behind all the BFT
algorithms of communication overhead to prevent byzantine faults.
Even though each BFT consensus algorithm varies in the number
of phases and leader election, they have the same behavior. We
consider for each blockchain consensus its best performance with
optimum participants, and extrapolate the transaction supportable
by the network for an entire day, we get the table 3. It shows the
applicability check of the consensus to the automotive use-case in
general as well as the accident use-case.

Applicability Clique IBFT QBFT PBFT
TPS per day 129600000 38880000 39744000 2160000
Ideal for Acci-
dent Use-Case

Yes Yes Yes Yes

Ideal for Au-
tomotive Use-
Case

Medium Medium High Low

Table 3: BFT Blockchain Applicability transactions

As in the above table, we can conclude that Clique has high per-
formance but suffers from consistency issues, QBFT has an average
performance with better scalability, and PBFT has less performance
but more consistency. Based on these results and conclusions, BFT
consensus is suitable for this automotive use case with some im-
provements needed, but it depends on the design choice factor to
consider CAP, performance, or applicability properties.
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